If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-300t+980=0
a = 16; b = -300; c = +980;
Δ = b2-4ac
Δ = -3002-4·16·980
Δ = 27280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27280}=\sqrt{16*1705}=\sqrt{16}*\sqrt{1705}=4\sqrt{1705}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-300)-4\sqrt{1705}}{2*16}=\frac{300-4\sqrt{1705}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-300)+4\sqrt{1705}}{2*16}=\frac{300+4\sqrt{1705}}{32} $
| 6x+5+9-10=360 | | 9k-8=28 | | 13x+3=68 | | (11x+5)+(13x-5)=180 | | (9x+11)+(5x+15)=180 | | (5x+50)+(70)=180 | | (8y+30)+(70)=180 | | (2x+60)=(4x-20) | | (2x+60)+(4x-20)=180 | | 35+x-14+2x=180 | | 59+11s=180 | | 118+31t=180 | | 2x+5+2x+5=5x+2 | | 1.5(m+7)=66 | | 36+32+14y=180 | | 51+39+10c=180 | | 25=0.375x | | 54+9a=180 | | 6x+28+16x=180 | | (9x+14)=(5x-2) | | 36+8p=180 | | 45+33+2z=180 | | 104+36+20b=180 | | 85+65+15b=180 | | 42+3y+y-6=180 | | (-2x+4)=3x-5 | | x/7/9=1/4 | | 10x79=2x+49 | | (8x+27)=180 | | (3x-15)=(2x+30) | | (2y+3)+(y)=180 | | (34x+18)+(42x+10)=180 |